On the Riemann Problem for Non-conservative Hyperbolic Systems
نویسنده
چکیده
منابع مشابه
Self-similar solutions of the Riemann problem for two-dimensional systems of conservation laws
In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem
متن کاملBoundary Layers for Self-similar Viscous Approximations of Nonlinear Hyperbolic Systems
We provide a precise description of the set of residual boundary conditions generated by the self-similar viscous approximation introduced by Dafermos et al. We then apply our results, valid for both conservative and non conservative systems, to the analysis of the boundary Riemann problem and we show that, under appropriate assumptions, the limits of the self-similar and the classical vanishin...
متن کاملThe Riemann Problem for the Shallow Water Equations with Discontinuous Topography
We construct the solution of the Riemann problem for the shallow water equations with discontinuous topography. The system under consideration is non-strictly hyperbolic and does not admit a fully conservative form, and we establish the existence of two-parameter wave sets, rather than wave curves. The selection of admissible waves is particularly challenging. Our construction is fully explicit...
متن کاملAn approximate solution of the Riemann problem for a realisable second-moment turbulent closure
An approximate solution of the Riemann problem associated with a realisable and objective turbulent second-moment closure, which is valid for compressible flows, is examined. The main features of the continuous model are first recalled. An entropy inequality is exhibited, and the structure of waves associated with the non-conservative hyperbolic convective system is briefly described. Using a l...
متن کاملHigh-Order Wave Propagation Algorithms for General Hyperbolic Systems
We present a finite volume method that is applicable to general hyperbolic PDEs, including non-conservative and spatially varying systems. The method can be extended to arbitrarily high order of accuracy and allows a well-balanced implementation for capturing solutions of balance laws near steady state. This well-balancing is achieved through the f -wave Riemann solver and a novel wave-slope WE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011